Sphere anemometers are simple devices that use the wind drag force on a sphere to determine the wind speed by equating the weight of the sphere with the drag force in a pendulum like configuration.
The drag force is the force that a sphere feels when traveling with a certain speed in a viscous fluid (relatively to the fluid, in our case air). This forces depends on the relative velocity between the air and the sphere, on the density of the air , effective area in contact with the fluid and an adimensional coefficient called the drag coefficient. In this case this force amounts to
Note that the drag coefficient is a geometric factor
and is usually determined experimentally. For a sphere, for high enough
Reynolds numbers, the drag
coefficient is around 0.5
.
Apparently this kind of anemometer was invented in 1900 by G. Daloz. Modern versions includes a ping-pong ball.
Equating the weight of the sphere
with the drag force in a pendulum like configuration for a given equilibrium position one gets
and for the velocity:
Where D=2 R is the diameter of the ping-pong ball.Given that a ping-pong ball has mass of 2.7g and a typical diameter of 40mm one gets for the density rhoball=2.7/(4*pi/3*2^3)~0.081 g/cm^3
and thus
Here's the OpenSCAD file:
// Author: Tiago Charters de Azevedo // Maintainer: Tiago Charters de Azevedo // Copyright (c) - 2016 Tiago Charters de Azevedo (tca@diale.org) // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3, or (at your option) // any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301, USA. // Gravity aceleration g=9.8; //(m/s^2) rhoair=0.001225; // (g/cm^3) // pi pi=3.1415926; /*Drag coeficiente .5 sphere see: https://en.wikipedia.org/wiki/Drag_coefficient */ Cd=.47; // Ping-Pong D=.04; // (m) mball=2.7; // (g) A=pi*pow(D/2,2); rhoball=mball/(4*pi/3*pow(100*D/2,3));// 0.081; // (g/cm^3) // Font size fsize=4; R=100; h=2; coef=1;//3.6*0.621371; module slice(h=2){ difference(){ cylinder(h,R,R,center=true,$fn=64); translate([0,2.5*R/2,0]){ cube([2.5*R,2.5*R,2*h],center=true);} translate([2.5*R/2,0,0]){ cube([2.5*R,2.5*R,2*h],center=true);}}} module vscale(){ for(alpha=[0:5:89]){ v=coef*sqrt(pi*g*rhoball*pow(D,3)*tan(alpha)/(3*A*Cd*rhoair)); rotate([0,0,alpha]){ translate([-R*.99,0,-0]){ rotate([0,0,-0]){ linear_extrude(height=h,scale=1,twist=0,convexity= 0){ text(str(floor(v*10)/10),size=fsize,font="Arial Black:style=Bold",center=true);}}} translate([-R*.8,-1*0,h/2]){ sphere(h/2,center=true,$fn=64);}}} translate([-R*.7,-1*0,h/2]){ sphere(h/2,center=true,$fn=64);} translate([0,-R+2,0]){ rotate([0,0,90]){ linear_extrude(height=h,scale=1,twist=0,convexity= 0){ text("m/s",size=fsize,font="Arial Black:style=Bold",center=true);}}}} //difference() { intersection(){ union(){ difference(){ slice(); cylinder(10,R*.7,R*.7,center=true,$fn=64);} translate([0,-R/2,0]){ cube([6*h,R,h],center=true);} translate([-R/2,0,0]){ cube([R,6*h,h],center=true);}} cylinder(10*h,R,R,center=true,$fn=64);} vscale();} cylinder(h,3*h,3*h,center=true,$fn=64); difference(){ union(){ cylinder(3*h,h,h,center=false,$fn=64); translate([0,0,3*h]){ sphere(h,center=true,$fn=64);}} translate([0,0,2.5*h]){ rotate([0,90,0]){ cylinder(3*h,1,1,center=true,$fn=64);}}}
Created: 08-05-2016 [18:12]
Last updated: 19-12-2024 [09:00]
For attribution, please cite this page as:
Charters, T., "Ping-Pong Anemometer": https://nexp.pt/Ping-Pong-Anemometer.html (19-12-2024 [09:00])
(cc-by-sa) Tiago Charters - tiagocharters@nexp.pt